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Item Characteristic Curves and Utility

The two-parameter IRT model:

Pijy = Φ(βjθi −αj)
αj = Difficulty parameter of item j
βj = Discrimination parameter of item j
θi = Latent score for unit i
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Item Characteristic Curves and Utility

Goal: measure students’ math ability

Low β High β

Low α Spell “cat” 3x = 6
High α Analysis of Ulysses

∫ π/2
0

cosx
esinx dx

Christopher Hare (University of Georgia) Measurement Models and Identification ICPSR Summer Program 2014 3 / 42



Item Characteristic Curves and Utility

Plotting the ICC (or IRF) in R:

disc.mean <- c(0.5, 1, 2)
diff.mean <- c(0, 0, 0)
x <- seq(-3, 3, by = 0.1)
y1 <- pnorm((disc.mean[1] * x) - diff.mean[1])
y2 <- pnorm((disc.mean[2] * x) - diff.mean[2])
y3 <- pnorm((disc.mean[3] * x) - diff.mean[3])
plot(x, y1, ylim=c(0,1), type="l", lwd=2,

col="blue", ylab="pr(1)", xlab=expression(theta))
lines(x, y2, lwd=2, col="red")
lines(x, y3, lwd=2, col="darkgreen")
abline(h=0.5, lty=2)
abline(v=0, lty=2)
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Item Characteristic Curves and Utility
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Item Characteristic Curves and Utility

Can also shift the ICCs to the left and right (corresponding to
more or less difficult items):

disc.mean <- c(1, 1, 1)
diff.mean <- c(-1, 0, 1)
x <- seq(-3, 3, by = 0.1)
y1 <- pnorm((disc.mean[1] * x) - diff.mean[1])
y2 <- pnorm((disc.mean[2] * x) - diff.mean[2])
y3 <- pnorm((disc.mean[3] * x) - diff.mean[3])
plot(x, y1, ylim=c(0,1), type="l", lwd=2,

col="blue", ylab="pr(1)", xlab=expression(theta))
lines(x, y2, lwd=2, col="red")
lines(x, y3, lwd=2, col="darkgreen")
abline(h=0.5, lty=2)
abline(v=0, lty=2)
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Item Characteristic Curves and Utility
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Item Characteristic Curves and Utility

The IRT model is so appealing to social scientists (well, at least
some of us), because it is in line with a theory of individual choice
behavior.
Human behavior is rational, but probabilistic.
When choices are very distant, individuals are less likely to make
“errors.”
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Item Characteristic Curves and Utility

Two-parameter IRT = Spatial voting with quadratic utility.

Uijy = −(θi −Ojy )2

Uijn = −(θi −Ojn)2

y∗
ij = Uijy −Uijn + εij

By construction, let βj = 2(Ojy −Ojn) and αj = O2
jy −O2

jn.
Then:

y∗
ij = βijθi −αij + εij

πijy = π(y∗
ij > 0) = Φ(βijθi −αij)

Christopher Hare (University of Georgia) Measurement Models and Identification ICPSR Summer Program 2014 9 / 42



Identification Issues in Measurement Models

Why is identification a problem?
In these types of models, what we are really estimating is the
distance between the points (Jeffrey Lewis).
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Identification Issues in Measurement Models
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Identification Issues in Measurement Models

Unique challenge for Bayesians: sampling from posterior
distributions.
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Identification Issues in Measurement Models
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Identification Issues in Measurement Models

The basic two-parameter IRT model (using the Judges example
from Simon Jackman):

model{
for (i in 1:9){
for (j in 1:228){

y[i,j] ˜ dbern(p[i,j])
logit(p[i,j]) <- x[i]*beta[j,1] - beta[j,2]

}
}
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Identification Issues in Measurement Models

Unidentified priors:

## priors
for (i in 1:9){
x[i] ˜ dnorm(0.0, 1.0)
}

for(j in 1:228){
beta[j,1:2] ˜ dmnorm(b0[1:2],B0[1:2,1:2])

}
b0[1] <- 0 b0[2] <- 0
B0[1,1] <- .04 B0[2,2] <- .04
B0[1,2] <- 0 B0[2,1] <- 0

}

Christopher Hare (University of Georgia) Measurement Models and Identification ICPSR Summer Program 2014 15 / 42



Identification Issues in Measurement Models
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Identification Issues in Measurement Models
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Identification Issues in Measurement Models

How can we remedy this problem?
The Kennedy-Helms constraint: constrain one θ to be -1, and
another θ to be +1.
Setting s + 1 constraints (where s is the number of dimensions) is
sufficient to achieve identification.
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Identification Issues in Measurement Models

#priors
x[1] ˜ dnorm(0.0, 1.0)
x[2] <- -1 ## Stevens
x[3] ˜ dnorm(0.0, 1.0)
x[4] ˜ dnorm(0.0, 1.0)
x[5] ˜ dnorm(0.0, 1.0)
x[6] ˜ dnorm(0.0, 1.0)
x[7] <- 1 ## Thomas
x[8] ˜ dnorm(0.0, 1.0)
x[9] ˜ dnorm(0.0, 1.0)
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Identification Issues in Measurement Models

But, this is problematic, too.
Bakker and Poole (2013): distances are no longer elastic, and
uncertainty about the constrained legislator locations is
transferred to others.
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Identification Issues in Measurement Models

Another solution: a series of sign constraints on the individual
and/or item parameters to “freeze” the posteriors in certain
quadrants.
This usually achieves identification (especially in one dimension),
but does not guarantee it.
In two dimensions, Bakker and Poole (2013) propose setting one
point at the origin to deal with shifts and pinning the second
dimension coordinate of another point at 0 to deal with rotations.
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Identification Issues in Measurement Models

#priors
x[1] ˜ dnorm(0.0, 1.0)
x[2] ˜ dnorm(0.0, 1.0)I(,0)
x[3] ˜ dnorm(0.0, 1.0)
x[4] ˜ dnorm(0.0, 1.0)
x[5] ˜ dnorm(0.0, 1.0)
x[6] ˜ dnorm(0.0, 1.0)
x[7] ˜ dnorm(0.0, 1.0)I(0,)
x[8] ˜ dnorm(0.0, 1.0)
x[9] ˜ dnorm(0.0, 1.0)
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Identification Issues in Measurement Models

Also, let’s not neglect the item parameters.
In the two-dimensional IRT model, we can achieve identification by
setting one item to load only onto one dimension (Jackman 2001).
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Identification Issues in Measurement Models

Some practical advice: The Dark Art of Starts (Howard
Rosenthal).
Good starts are important–even critical–in these models. Why?
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The Original Masters of Nasty Likelihood Surfaces

Christopher Hare (University of Georgia) Measurement Models and Identification ICPSR Summer Program 2014 25 / 42



Identification Issues in Measurement Models

This could include either hard-coding in or setting appropriate
signs on (still dispersed) starting values:

> legislator.starts <- rnorm(N, 0, 1)
> legislator.starts[party=="R"] <-

abs(legislator.starts[party=="R"])
> legislator.starts[party=="D"] <-

-1 * abs(legislator.starts[party=="D"])
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Identification Issues in Measurement Models

Another popular option is to run some sort of maximum likelihood
method and feed those results as the initial values.
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Modifying the IRT Model

The two-parameter IRT model: Pijy = Φ(βjθi −αj)

model{
for(i in 1:N){
for(j in 1:Q){
y[i,j] ˜ dbern(pi[i,j])
probit(pi[i,j]) <- beta[j]*ideo[i] - alpha[j]
}}
## priors
for (i in 1:N){
ideo[i] ˜ dnorm(0,.1)
}
for(j in 1:Q){
alpha[j] ˜ dnorm(0,.1)
beta[j] ˜ dnorm(0,.1)
}}
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Modifying the IRT Model (MIMIC)

Vote 1

Vote 2

Vote 3

Ideology Personal Characteristics

District Characteristics

Party Characteristics
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Modifying the IRT Model (MIMIC)

model{
for(i in 1:N){
for(j in 1:Q){
y[i,j] ˜ dbern(pi[i,j])
probit(pi[i,j]) <- beta[j]*ideo[i] - alpha[j]
}}
## priors
for (i in 1:N){
ideo[i] ˜ dnorm(0,.1)
}
for(j in 1:Q){
alpha[j] ˜ dnorm(0,.1)
beta[j] ˜ dnorm(0,.1)
}}
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Modifying the IRT Model (MIMIC)

The MIMIC (multiple indicators multiple causes) model:

## priors
for (i in 1:N){
ideo[i] ˜ dnorm(mu[i],tau)
mu[i] <- a1 + b[1]*white[i] + b[2]*female[i]

+ b[3]*income[i] + b[4]*secular[i]
}
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Modifying the IRT Model (Dynamic IRT)

The use of “random-walk” priors to estimate dynamic
measurement models introduced in political science by Martin and
Quinn (2002).
Random-walk priors are theoretically attractive because they are a
compromise between two extremes: one that says parameters
(like θ never change over time and the other that says parameters
are entirely independent across time.
The practical effect of random-walk priors is to smooth parameter
estimates across time.
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Modifying the IRT Model (Dynamic IRT)

The two-parameter IRT model:

Pijy = Φ(βjθi −αj)
Modify to allow ideal points to be dynamic; index θ by time t
(t = 1, . . . ,T ).
The two-parameter dynamic IRT model: Pijyt = Φ(βjθit −αj).
Random Walk Priors:

θi1 ∼ N(0,τ1)

θit ∼ N(θi(t−1),τ2)

τ1 ∼ Gamma(1,0.1)

τ2 ∼ Gamma(1,0.1)
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Modifying the IRT Model (Dynamic IRT)

model{
for(i in 1:N){
for(j in 1:Q){
for(t in 1:T){
y[i,j] ˜ dbern(pi[i,j])
probit(pi[i,j]) <- beta[j]*ideo[i,t] - alpha[j]
}}
## priors
for (i in 1:N){
ideo[i,1] ˜ dnorm(0, tau.Z[1])
for (t in 2:T){
ideo[i,t] ˜ dnorm(ideo[i,t-1], tau.Z[2])
}}
for(j in 1:Q){
alpha[j] ˜ dnorm(0, 0.1)
beta[j] ˜ dnorm(0, 0.1)
}
tau.Z[1] ˜ dgamma(1, 0.1)
tau.Z[2] ˜ dgamma(1, 0.1)}

Christopher Hare (University of Georgia) Measurement Models and Identification ICPSR Summer Program 2014 34 / 42



Modifying the IRT Model (Dynamic IRT)
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Modifying Measurement Models (BAM Scaling)

Recall the factor model:

yij = βjζi + εij
A useful way to think about this is that is specifies the DGP for the
observed responses.
Aldrich and McKelvey (1977) theorized a model in which
respondents’ issue scale placements are a function of the true
positions of the stimuli, individual-specific distortions, and error.
That is,

zij = αi + βiζj + εij
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Modifying Measurement Models (BAM Scaling)

Estimating the unknowns (αi , βi , and ζj ) is straightforward in a
Bayesian framework (and easy to code!):

model{
for(i in 1:N){ ## loop through respondents

for(j in 1:q){ ## loop through stimuli
z[i,j] ˜ dnorm(mu[i,j], tau[j])
mu[i,j] <- a[i] + b[i]*zeta[j]
}}
## priors on a and b
for(i in 1:N){
a[i] ˜ dunif(-100,100) ## priors on a and b
b[i] ˜ dunif(-100,100)
}
for(j in 1:q){
tauj[j] ˜ dgamma(.1,.1) ## priors on tauj
zeta[j] ˜ dnorm(0,1) ## priors on zeta
}}
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Modifying Measurement Models (Dealing with
Heteroskedasticity)

What about error variance in these models?
The two-parameter IRT model:

Pijy = Φ(βjθi −αj)
Lauderdale (2010) proposes adding a term that allows for unique
error variance:

Pijy = Φ(
βjθi−αj

σi
)

Can also conceptualize as:

Pijy = Φ(βiβjθi −αj)
σi represents the degree to which the latent score influences the
observed indicators (higher values = more unpredictable).
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Modifying Measurement Models (Dealing with
Heteroskedasticity)
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Modifying Measurement Models (Scaling Texts)

Wordfish: Slapin and Proksch (2008).
http://www.wordfish.org/

Assume the number of times that party i mentions word j follows a
Poisson distribution:

yij = Poisson(λij)
λij = αi + Ψj + βjθi

Where αi and Ψj are party and word fixed effects, βj measures the
discrimination of word j , and θi is party i ’s ideological position.
Standard advantages of estimating this model in a Bayesian
framework.
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Modifying Measurement Models (Scaling Texts)
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Modifying Measurement Models (Scaling Texts)
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